
CDS 230
Modeling and Simulation I

Module 6
Functions

Dr. Hamdi Kavak
http://www.hamdikavak.com

hkavak@gmu.edu



Functions

• A mechanism to group a set of statements together and call them using a 
given name.
• Designed for a specific task
• Actually, we have been using functions

• print(“Hello, world!”)
• abs(-50)
• list([1,2,3])
• math.sin(0.0)

CDS 230 - Modeling and Simulation 1 — © Dr. Hamdi Kavak 2



Why do we need functions?

• Code re-use
• No need to re-invent the wheel
• Makes coding more efficient

• Code organization
• Separation of tasks
• Improves readability
• Easier to collaborate

CDS 230 - Modeling and Simulation 1 — © Dr. Hamdi Kavak 3

Source: https://www.monkeyuser.com/2018/code-reuse/



Defining functions

Keyword for 
defining a function

Name of the function (given by you; case sensitive)

Argument (parameter) to 
the function (not required).

Body of the function (indented)
Colon

CDS 230 - Modeling and Simulation 1 — © Dr. Hamdi Kavak 4



Calling functions

• Calling signature (name and parameters) should match definition

• Should be introduced before first usage

square_root(4)

CDS 230 - Modeling and Simulation 1 — © Dr. Hamdi Kavak 5

Let’s say we call this function with argument 4



return in functions 

• return keyword is used to get value (s) out from functions
• you can use the returned value: variable = function_name(param)

Ways to return (or not return)

No return One value return Multiple values return? sort of..

Let’s say we call each function with parameter value 16. Output?
CDS 230 - Modeling and Simulation 1 — © Dr. Hamdi Kavak 6



print() vs. return()

Printing and returning may seem similar, but there are important differences.

Print
• Used to tell people (us) what Python is 

doing.
• Good for figuring out issues when 

programming.
• Can be used anywhere we want.
• Can’t save printed value in variables.

Return
• Used to tell Python what it itself is doing.
• Can only be used at the end of functions.
• Once Python hits a return, the function 

stops.
• Can save returned value in variables.
• Have to print to see returned value.

CDS 230 - Modeling and Simulation 1 — © Dr. Hamdi Kavak 7



Arguments (passing values to functions)

• You can define as many you want and even call them unordered

• Optional arguments are possible 
Guess the output?

CDS 230 - Modeling and Simulation 1 — © Dr. Hamdi Kavak 8



Variable scope

• Defined a variable within a function?
• They are called local variables
• It will be available to that function only
• It will be live while function is being executed

local variable

CDS 230 - Modeling and Simulation 1 — © Dr. Hamdi Kavak 9



Python’s variable scope priorities

1. Local scope
2. Enclosing scope 
• for nested functions

3. Global scope
4. Built-ins

CDS 230 - Modeling and Simulation 1 — © Dr. Hamdi Kavak 10



Recursive functions

• A function that can call itself

• Alternative to iterative (loop etc.) coding but can be a bit slower
• Has the potential to shorten your code and make it look elegant
• Proper stop condition is needed, otherwise your code will crash

CDS 230 - Modeling and Simulation 1 — © Dr. Hamdi Kavak 11



Example 1 – basic understanding

• Write a function named sum_all that takes a list and returns the sum of 
values.

CDS 230 - Modeling and Simulation 1 — © Dr. Hamdi Kavak 12



Example 2 – Fibonacci sequence

• Fibonacci sequence: Each number is the sum of the two previous 
numbers.

You are given the first two numbers

Write a function that prints the above Fibonacci series based on F’s index.
E.g.,: fib(4) will print: 0, 1, 1, 2, 3

CDS 230 - Modeling and Simulation 1 — © Dr. Hamdi Kavak 13



So

• You should master on creating functions.
• returns
• arguments (values passed to functions)
• variable scope (at least local vs. global variables)

• New coding assignments can and will ask you to write functions.
• E.g.: write a function named hello() which takes no argument and prints 

“Hello, World!” as shown below.

CDS 230 - Modeling and Simulation 1 — © Dr. Hamdi Kavak 14


